Point Charges Optimally Placed to Represent the Multipole Expansion of Charge Distributions

نویسندگان

  • Ramu Anandakrishnan
  • Charles Baker
  • Saeed Izadi
  • Alexey V. Onufriev
چکیده

We propose an approach for approximating electrostatic charge distributions with a small number of point charges to optimally represent the original charge distribution. By construction, the proposed optimal point charge approximation (OPCA) retains many of the useful properties of point multipole expansion, including the same far-field asymptotic behavior of the approximate potential. A general framework for numerically computing OPCA, for any given number of approximating charges, is described. We then derive a 2-charge practical point charge approximation, PPCA, which approximates the 2-charge OPCA via closed form analytical expressions, and test the PPCA on a set of charge distributions relevant to biomolecular modeling. We measure the accuracy of the new approximations as the RMS error in the electrostatic potential relative to that produced by the original charge distribution, at a distance 2x the extent of the charge distribution--the mid-field. The error for the 2-charge PPCA is found to be on average 23% smaller than that of optimally placed point dipole approximation, and comparable to that of the point quadrupole approximation. The standard deviation in RMS error for the 2-charge PPCA is 53% lower than that of the optimal point dipole approximation, and comparable to that of the point quadrupole approximation. We also calculate the 3-charge OPCA for representing the gas phase quantum mechanical charge distribution of a water molecule. The electrostatic potential calculated by the 3-charge OPCA for water, in the mid-field (2.8 Å from the oxygen atom), is on average 33.3% more accurate than the potential due to the point multipole expansion up to the octupole order. Compared to a 3 point charge approximation in which the charges are placed on the atom centers, the 3-charge OPCA is seven times more accurate, by RMS error. The maximum error at the oxygen-Na distance (2.23 Å) is half that of the point multipole expansion up to the octupole order.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New versions of image approximations to the ionic solvent induced reaction field

A recent article by Deng and Cai (Extending the fast multipole method for charges inside a dielectric sphere in an ionic solvent: High-order image approximations for reaction fields, to appear in J. Comput. Phys.) introduced two fourth-order image approximations to the reaction field for a charge inside a dielectric sphere immersed in a solvent of low ionic strength. To represent such a reactio...

متن کامل

The continuous fast multipole method

We introduce the continuous fast multipole method (CFMM), a generalization of the fast multipole method for calculating Coulomb interaction of point charges. The CFMM calculates Coulomb interactions between charge distributions, represented by continuous functions, in work scaling linearly with their number for constant density systems. Model calculations suggest that for errors in the potentia...

متن کامل

A single-site multipole model for liquid water.

Accurate and efficient empirical potential energy models that describe the atomistic interactions between water molecules in the liquid phase are essential for computer simulations of many problems in physics, chemistry, and biology, especially when long length or time scales are important. However, while models with non-polarizable partial charges at four or five sites in a water molecule give...

متن کامل

Toroid Moments in Electrodynamics a ~ ~ Dsolid - State Physics

Introduction 147 10. Experimental realization of proper and pseudoproper Part I. Toroid moments in electrodynamics 149 orbital itinerant antiferromagnets 181 1. Formulation of the problem of the multipole expansion 149 Conclusions 187 2. Expansion of current densities 151 Appendix A. On the representation of vector currents (fields) 3. Multipole expansion of the interaction energy of a system t...

متن کامل

A point-charge model for electrostatic potentials based on a local projection of multipole moments

We introduce a method for obtaining atomic point-charges that yield accurate representations of the electrostatic potentials (ESP) of large systems. The method relies on a decomposition of the density and subsequent projection of the multipole moments of the density components onto neighbouring atomic sites. The resulting local multipole-derived charges (LMDCs) are well-defined, do not require ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013